THE EFFECT OF EMBEDMENT ON FOOTING VIBRATIONS

by
(1) (11)

M. Nova and Y. Beredugo

Synopsis

The forced vibration of embedded footings is investigated both
theoretically and experimentally. The approximate analytical solution,
based on the side reactions computed by Baranov (2), facilitates the
analysis of all vibration modes with any dynamic stress distribution in the
foundation base and with various assumptions concerning the back fill.
Field experiments are described with concrete footings featuring square and
rectangular bases. Vertical and coupled horizontal motions are studied
with embedment into both undisturbed soil and back fill. It appears that
the main factors are: direction of excitation, depth of embedment and
stress distribution in the base and also the density of the back fill and its
bond with the footing.

Most studies of footing vibrations concern bodies attached to the
surface of the soil or, in the theory, to the surface of the elastic half-
space. However, the experiments indicate (5), (6), (9), (10) that the
footing response can be highly affected by the embedment. It has been
recognized that the embedment reduces the resonant amplitudes and increases
the resonant frequencies and that these effects are more marked with the
horizontal excitation. Quantitatively, these observations remain rather
vague.

There are several theoretical solutions based on the elastic half-space
theory. Tajimi (14) solved the vibration of a body embedded in an elastic
stratum overlying the bedrock. Baranov (2) considered the reactions in the
base from a half-space and derived side reactions from an independent
horizontal layer overlying the half-space. Lysmer and Kuhlemeyer (8)
solved the vertical vibration using the finite element method. The solutions
by Baranov and Lysmer and Kuhlemeyer assumed that the soil around the
footing is the same as beneath its base. A1l solutions assumed, furthermore,
that there is a perfect bond between the footing sides and the soil. These
two assumptions are not satisfied if the footing is poured into forms and
then surrounded by a back fill as is often the case. Experiments indicate
(10) that in such cases the effect of embedment can be considerably reduced
and the theory may predict much lower resonant amplitudes and higher
resonant frequencies than are probable to appear in reality.

As for resonant amplitudes there is also another possible reason for
the theory not to yield conservative results. Sung's approximate solution
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(13) indicates that the resonant amplitudes markedly vary with the assumed
stress distribution in the base and that the parabolic distribution yields
the maximum response. Experimental amplitudes from some field tests

(10) appear much closer to the theoretical amplitudes computed under the
assumption of the parabolic stress distribution, than to the results of the
exact solution to the contact problem (1) or to the approximate solution
with a rigid base stress distribution (13). Chae's Taboratory tests (4)
suggest that the dynamic stress distribution varies with frequency.
Furthermore, it can be expected that the stress distribution also depends
upon the kind of soil, size of the footing and the level of stress. With
respect to these factors, it seems desirable that the theory be flexible
enough to comply with the experimental findings.

Here, some theoretical results are outlined and field experiments
with concrete test footings presented. The main goal is to accumulate
information about the major factors dominating the dynamic response of
embedded footings.

Theoretical Solution

From the point of view of versatility, an approximate analytical
approach seems suitable in which the reaction in the footing base is
derived from the half-space and the soil reactions acting on the sides are
taken as the forces produced by an independent overlying stratum. This
approach was applied by Baranov (2) who derived relations for the dynamic
reactions of a layer having a unit thickness and attached to a cylindrical
footing with radius »,. The relation between the complex vertical motion
w(t) = w exp (iwt) and the vertical reaction of the unit layer sw(t) is

sw(t) = GS(SM + 15 ,) w(t) (1)
in which
. ) Jlo + Y1Y, 5 4 -
= ma ——————————rrrr =
wl o) 2 2 2 Tp2 2 2
JO + YO JO + yO

Horizontal translation of the footing u(t) = u exp (Zwt) produces a
horizontal reaction of the unit layer

su(t) = GS(Sul + isuz) ult) (3)

in which with v = 0.5

JJo + Y Y 8
_ o° 2 0 2, 2 _
Sul =n{1 + 2 —__E——__E_—J a Su2 = —— (4)
JO+YO J0+.YO

Finally, rotation about a horizontal axis ¥(z) = ¥ exp (Zwt) produces a
moment

_ 2 : 5
8, (3 = 8.5, (Swl + 1Sw2) Y(t) (5)
where 5 vy
&
o1 o1 2
S .=m(1~q ————), 8, ,=—— (6)
vl fe) 2 2 72 Ty2 2 2
TR gy * 15
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In the above relations, Jo(ao), Jl(ao), J2(ao) = Bessel functions of the
first kind of order zero, one and two respectively and YO(aO), Yl(ao),
YZ(ao) = Bessel functions of the second kind of order zero, one and two.
The argument is the dimensionless frequency a, =7 /575;, G, = shear
modulus and p = mass density of the layer.

The soil reactions in the footing base can be considered approximately

equal to the elastic half-space reactions readily available for all
vibration modes in the literature (3), (13).

The vertical reaction with a pure vertical motion w(t) can be written
as:

1
R (t) = - Gr (—————) w(t) =Gr (C_, +iC ) w(t) 7
z o fw1+7’.w2d Tollwr T *oyg’ ¥ (7)

The horizontal reaction with a pure horizontal vibration u(t) is similarly

)
R (t)= -Gr (———— ) u(t) =Gr_ (C ., + 1iC .) u(t) (8)
X B
o fu1 * 1f,0 o ul u2
With pure rocking, y(t), the reactive moment is analogous
3 1 3 .
R (t) =~ Gr. (—=——) W(t) =Gr ° (C . +iC ) ¥(t) (9
Ip o fw] + $f¢2 [} lb] Il)2

In Equations (7), (8) and (9), ¢ = shear modulus of the half-space (soil
beneath the base) and

'fwl fw2
C = ——; Cog = —5——7 (10)
wil 2 2 wa 2
fbl * fb2 fw1 * Tw2
_ “Jul . _ fu2
Ca =35> O R B | (11)
Fuz + fus fuz *Tuz
_ Fa _ Ty
Co1 = —3—3 Coe = —3——3 (12)
Fo1 * Fys For * Fye

Functions f are taken with the same signs as in (3), (13). Then, the
equations of motion for the three uncoupled vibration modes are:
GS

mw + Gr {C . +13C o + — 8s , + 28 )} wit) = P eap (iut) (13)

" y Gs P ®
mu+ Gr {C, . +iC , + = 8(5,, + 15,,)} u(t) Q, exp (iwt) (14)
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3
, 8 o 8
[a(sw + 8,50 + = s, + 8,014 v(t)

=1 eap (iut) (15)

3
i . 8
Iw¢ + Gro {sz + zcwz + =

2

in which m = mass of footing, I,= mass moment of inertia about the centre
of the base, & = /r, = relative embedment, P, = amplitude of the vertical
exciting force, §, = amplitude of the horizontal exciting force and T, =

amplitude of the exciting moment about the centre of the base. Functions
5(a,) and C(a,) are given by Equations (2), (4), (6) and (10}, (11), (12).

From Equations (13), (14) and (15), the steady forced oscillations can
be solved in a straight-forward manner.

Baranov's approach can be extended to involve various stress distri-
butions in the footing base and various assumptions concerning the back
£i11. Both of these factors can be substantial. Finally, the results of the
solution can be presented in dimensionless form suitable for applications.

Considering only the moment from the horizontal force Q(¢) and assuming
a frequency variable excitation
_ _ 2 _ 2
P o=Q =meuw and T = mews (16)
in which mg, e = rotating mass and its excentricity and zp = the height

of Q(¢) above the base. Denote the real amplitudes of motion wo, uo
and y,. Then the dimensionless real amplitudes can be introduced:

m I

= v
w A =—m u, A = (17)
3 me © S me 9 Vo omgezp Yo

With this notation the dimensionless amplitudes of vertical, horizontal
and rocking vibrations of embedded footings are, from Equations (13) to
(16):

A = il (k, - e (czw)g}_%
=
4= i {(kx = mw2)2 + (cmu))z} 2 (18)
_ .2 o 2y2 2.-%
AlP—Ilbw {(kq, Iww) + (clpw) }
in which
GS
kz = Gro{Cwl + E'— sswz}
GS
k, =0Cr, {C,;+ . 65,
.3 G 2
kw = Gr {Cwl + G_a (SM + Es Sul)} (19)
Gr G
_ 7o s
8y = — Ly #— EE)
W G
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Equations (18) for 4,, 4y, and 4, are formally equal to the dimensionless
amplitudes of single degree of freedom systems. Thus kg, k, and ky are
equivalent spring constant and ¢, op and ¢, are eau1va1ent damping

constants for an embedded footing., Therefore, the undamped natural frequencies
of embedded footings are:

Gr G
/—2{0 +.285 3}

Yoz TV T MwiT g wl
Gr
= / 9 Gg
Cox = m {Cul ¥ re y Sul} (20)
Gr, 3 a 1
2
=/— (¢ +Ls (s ,+— 5.0}
woq, I\b N o Y1 2 ul

The natural undamped frequencies w, must be determined from Equation

(20) by trial and error approach since they appear in ¢ and 5 too. (The
undamped natural frequency is not equal to the frequency at maximum amplitude
which is called resonant frequency herein.)

Examp1es of theoretical response curves at various embedments are
presented in Figs. 1 to 4. The vertical (Fig. 1, 2) and horizontal (Fig. 3)
vibrations were computed from Equation (18) w1th v = 0.5 while for rocking
vibrations (Fig. 4) v = 0.0 was used.

The dependence of the response curves upon Poisson's ratio is reduced
when modified mass ratios B are used. {These were introduced by Lysmer
and Hall (12)}. Both mass ratios b, and B are given in the figures.

The theoretical response curves shown in Fig. 1 were computed with
Bycroft's (3) displacement functions f; 2. The curves shown in full lines
represent a situation in which the soil’properties are the same beneath the
footing and around it as is the case with footings embedded in undisturbed
soil. These response curves are in reasonable agreement with those by Lysmer
and Kuhlemeyer (8) obtained by finite element approach.

Curves shown in the dashed lines are computed for a footing surrounded
by a back fill whose density o, = 0.750. {It is assumed that
Ge/G = (pg/p)3}. It can be seen that the effect of embedment is reduced
in the case of back fill.

The reduction of resonant amplitudes and the increase in resonant

frequencies qualitatively agrees with experimental observations. However,
the theoretical resonant amplitudes are roughly one half of those observed
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in previous experiments (10). This discrepancy can be considerably reduced
if a parabolic stress distribution is assumed in the footing base. The
theoretical response curves computed under this assumption with Sung's

(13) values of frequency functions f1, fz are plotted in Fig.2. It can

be seen that response amplitudes are much larger in this case. The
parabolic stress distribution seems rather speculative. Nevertheless,
there are indications that it may be sometimes acceptable {Chae (4)}.
Anyway, the parabolic stress distribtuion combined with the assumption of a
back fill yields the upper bound for theoretical amplitudes of vibrations.

The theoretical response curves for pure horizontal translation are
plotted in Fig. 3. The theoretical response curves for pure rocking
vibration (rotation y) are given in Fig. 4. As can be seen, the effect
of embedment is by far most pronounced with pure rocking vibrations.

It might be noted that pure horizontal translation and pure rocking
imply the existance of constraints eliminating other components of motion.
These constraints, however, do not exist in reality. Therefore the horizontal
excitation always produces a coupled motion composed of horizontal trans-
lations and rotation; with an assymmetric footing a vertical component is
also present. Thus, Fig. 3 approximately illustrates the horizontal
vibration of a very flat footing and Fig. 4 the rotation of a very tall
footing. The theory outlined can be used to solve the coupled motion too.
This is presented elsewhere. The theory is approximate in that the
compatibility condition between the half-space and the overlying layer is
neglected. However, the results seem reasonable.

The experimental results available so far indicate that the real
effect of embedment may also depend on some further factors not included
in the theory. There may also be some difference in the magnitude
of the theoretical and experimental amplitudes as mentioned above. To
shed some 1ight on these questions, field experiments described herein were
carried out.

Experiments With Embedded Footings

Two concrete blocks with base areas of 5 square feet were used in the
field tests. One block had a square base, the other one a rectangular
base with side ratio 2/1. The blocks were poured directly into excavations.
The initial embedment was 36 inches. The embedment depth was changed by
removing the soil in several steps. Then the soil was step-wise back
filled and tamped to two different densities. The subsoil was composed
of about 5 feet of brown silty clay underlain by a glacial till of considerable
thickness.

The test equipment consisted of:

(1) A Lazan Mechanical Oscillator producing a frequency dependent
exciting force with a maximum eccentric moment of 18 1b-in in
either vertical or horizontal directions.

(ii) A 220-Volt three-phase motor fitted with a Kopp Variator,
providing stepless speed variation from 300 to 3600 revolutions
per minute, and connected with the oscillator by a flexible shaft.

(iii) A dual beam storage oscilloscope.

iv) A Brush two channel recorder.

(v) Two IRD electrodynamical vibration pick-ups which measured
absolute quantities.
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(vi) A portable self-powered IRD Vibration Meter (Model 306).
(vii) A "Strobotac" Stroboscope for accurate measurement of speed.

The experimental equipment was acquired in connection with a broader
research program at The University of Western Ontario. The field tests
were carried out by the junior author.

The shear modulus and the Poisson's ratio of the subsoil were obtained
in the field from wave length and wave velocity measurements. From these
tests and laboratory testing of the soil samples, the following properties
were obtained for the dynamic calculations:

Mean bulk density of wndisturbed soil = 103.0 1b/ft°
Mean bulk density of heavily tamped fill = 98.0 Ib/ft

Mean bulk demsity of lightly tamped fill = 79.0 1b/ft3

Mean moisture content of soil = 16%; void ratio of undisturbed soil = 0.9
Shear modulus of undisturbed soil = 6.6 x 1051b/ft2

Poisson’'s ratio of undisturbed soil = 0.38

The response curves of steady-state vibrations were measured with
vertical or horizontal excitations at various embedment depths. With
horizontal excitation, the response measured on the surface was recalculated
to yield the horizontal translation and the rotation at the centre of
gravity of the footing. Examples of the experimental response curves are
given in Figs. 5 to 10. Also given in these figures are the excitation
direction and intensity, the depth of embedment and the relative density
of the back fi11 (eg, = eccentric moment in Tb-in).

As can be seen from Figs. 5 and 6, the response curves feature a
strong nonlinearity with both surface and embedded footings. The non- .
Tinearity exhibits the familiar decrease of resonant frequencies with increasing
excitation (10) and complicates the analysis of experiments (11) as well
as their comparison with the theory.

Fig. 7 shows the differences observed between the vertical vibrations
of square and rectangular footings having the same base areas and masses.
(The excitation was also the same in both cases).

Fig. 8 illustrates the horizontal component of coupled vibrations of the
square footing embedded into undisturbed soil and excited by a horizontal
force. Fig. 9 shows the same kind of motion of the same footing embedded into
the back fill.

In Figure 10 the horizontal components of coupled vibrations are
presented for the rectangular footing embedded in undisturbed soil. The
figure illustrates the difference in response due to the direction of the
exciting force.

Comparison of Theory with Experiments

The theoretical response qualitatively agrees with the experimental
observations in the following respects: the resonant amplitudes decrease
and the resonant frequencies increase with increase in depth of embedment
and density of the back fill. The quantitative comparison is affected
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by the assumptions accepted for the surface footing and by the possible
layering of the subsoil. This difficulty can be reduced by considering the
relative changes in resonant frequencies and amplitudes due to embedment.

Such comparison can be most easily done with vertical vibration of symmetric
footings. In Fig. 11, the relative reduction of vertical resonant amplitudes
due to embedment in undisturbed soil is plotted against the relative embedment
depth 1/r,. The theory is compared with the field tests and other available
data. This can be done directly because the theoretical resonant amplitude
ratio appears nearly independent of mass parameter with this kind of motion.
The agreement between the theory and experiments appears reasonable.

In the case of the back fill the agreement is not as good, (Fig. 12),
in particular with lower embedments. Most experiments indicate smaller
amplitude reduction and much smaller increase in resonant frequency than the
theory predicts. The reason for these discrepancies may be that the theory
assumes a perfect bond between the footing sides and the surrounding back
fill. It seems advisable for practical purposes to intuitively reduce the
theoretical effect of embedment as suggested in Fig. 12. In the same figure
the theoretical curve for undisturbed soil is also plotted (n = 1.00). It
can be seen that theories assuming n = pg/p = 1 can considerably over-
estimate the effect of embedment into the back fill.

The comparison of the theory with experiments in the case of coupled
horizontal vibration and rocking can be seen from Figs. 13 to 16. Fig. 15
indicates that the theory is better able to predict the resonant amplitudes
for embedded footings than for surface footings. This is most likely due
to the neglect of internal friction in the soil and to very small geometric
damping of the surface footings in the rocking vibration mode. Further
details are presented elsewhere.

Conclusions

The approximate analytical solution of an embedded footing compares
favourably with the finite element solution for vertical vibration and
can be used to solve the other modes of vibrations too.

The theory and experiments agree qualitatively in the decrease in
resonant amplitudes and increase in resonant frequencies with embedment depth
and the density of the back fill.

The quantitative agreement is reasonable for footings embedded into
the undisturbed soil, in particular with coupled horizontal vibration. With
the back fill, the theory appears to over-estimate the relative effect
of embedment. This may be attributed to the imperfect bond between the
footing sides and the surrounding back fill. (A perfect bond is assumed in
the theory).

The greatest influence of embedment can be expected with vibration modes
that approach pure rocking.
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GLOSSARY QF TERMS

dimensionless amplitude of horizontal vibration
dimensionless amplitude of vertical vibration

dimensionless amplitude of rocking vibration

dimensionless frequency = row 0/G

modified mass ratio for horizontal vibration = bo(7—8v)/32(1-v)
modified mass ratio for vertical vibration = bo(z-v)/4
modified mass ratio for rocking vibration = S(Z—V)Iw/gprOS
mass ratio for vertical and horizontal vibration = m/pros
functions of a,

equivalent damping coefficients for horizontal vibration
equivalent damping coefficients for vertical vibration
equivalent damping coefficients for rocking vibration
eccentricity of rotating mass

functions of a,

shear modulus of elastic half-space (soil beneath the footing base)
shear modulus of elastic layer (back fill)

acceleration of gravity

weight of rotating mass = m g

/=1

mass moment of inertia about centre of base

equivalent spring constant for horizontal vibration
equivalent spring constant for vertical vibration
equivalent spring constant for rocking vibration

depth of embedment

mass of footing

rotating (unbalanced) mass

amplitude of excitation

vertical exciting force
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amplitude of horizontal excitation

horizontal exciting force

horizontal half-space reaction

vertical half-space reaction

half-space reactive moment

radius of footing, equivalent radius of footing
Baranov's frequency functions for layer

side reaction of layer having unit thickness
amplitude of exciting moment

time

horizontal displacement = u(t)

real amplitude of horizontal displacement
vertical displacement = w(t)

real amplitude of vertical displacement
height of @(¢t) above footing base

height of centre of gravity above footing base

height of Q(z) above centre of gravity

relative embedment = Z/ro

density ratio = ps/b

Poisson's ratio

excitation frequency

natural undamped freguency

angular (rocking) displacement = y(t)
real amplitude of angular displacement
mass density of elastic half-space

mass density of elastic layer
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DISCUSSION OF PAPER NO. 7

THE EFFECT OF EMBEDMENT ON FOOTING VIBRATIONS

by

M. Novak and Y. 0. Beredugo

Question by: K.G. Asmis

How would you adopt your theoretical analysis to obtain a nonlinear
analysis? Also, what mathematical form of nonlinearity would you use to
model the nonlinear behaviour?

Reply by: M. Novak

To introduce a true nonlinearity into the half-space theory would be
very difficult. Fortunately, it does not seem necessary with steady-state
vibrations considered in the paper. The nonlinear features of response
curves can be described by a linear theory by introducing a shear modulus
(or an equivalent spring constant) which is dependent upon the level of the
dynamic stress. In other words, it seems possible to assume that the soil
linearizes after many loading cycles within the range of the vibration
amplitudes (-4,+#4). If the amplitude is changed the soil linearizes again,
however it exhibits a different stiffness. Such properties were called
nongenuine (or pseudo-) nonlinearity as the vibration at any steady amplitude
is linear while the response curve features typical nonlinearities (Refs. 9,
10).

The inverse problem is to derive data from a nonlinear response curve
obtained experimentally. This is discussed in Ref. 11.

Question by: W.D.L. Finn

How do you assess lateral resistance in the case of the back fill footing.
You took one for your embedded footing and reduced it down as low as 0.75. I
am not certain how you assessed these factors.

Reply by: M. Novak

One of the advantages of this approximate analysis approach is that we
are in a position to express the equivalent stiffness and equivalent damping
using some formula for their computation. We get these equivalents as a
function of frequency, shear modulus and density. Choosing, say density and
shear modulus of side fill, we can get various stiffnesses and equivalent
dampings. The additional bonus we get is that having these qualities, we can
introduce the reactions of embedded footings into the calculations of more
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complicated structures; for example, a tall building which sits on some
embedded caisson, can be solved and we can introduce reactions as in any
other kind of lumped parameter model with the only change being that our
stiffness and damping are frequency-dependent but it is not necessary to
take any additional care about the half-space or about the soil.
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